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Abstract

Accurate and efficient direct numerical simulation of turbulence in

the presence of shock waves represents a significant challenge for nu-

merical methods. The objective of this paper is to evaluate the perfor-

mance of high order compact and non-compact central spatial differ-

encing employing total variation diminishing (TVD) shock-capturing

dissipations as characteristic based filters for two model problems com-

bining shock wave and shear layer phenomena. A vortex pairing model

evaluates the ability of the schemes to cope with shear layer instability

and eddy shock waves, while a shock wave impingement on a spatially-

evolving mixing layer model studies the accuracy of computation of

vortices passing through a sequence of shock and expansior/waves.

A drastic increase in accuracy is observed if a suitable artificial com-

pression formulation is applied to the TVD dissipations. With this

modification to the filter step the fourth-order non-compact scheme

shows improved results in comparison to second-order methods, while

retaining the good shock resolution of the basic TVD scheme. For this

characteristic based filter approach, however, the benefits of compact

schemes or schemes with higher than fourth order are not sufficient to

justify the higher complexity near the boundary and/or the additional

computational cost.

*Queen Mary and Westfield College, London, UK
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1 Introduction

Time- and space-resolved direct numerical simulation (DNS) of turbulence is

feasible for many canonical flow problems (Moin & Mahesh, 1998) and with

increased computer power more applied problems such as separation bubbles

(Alam & Sandham, 1997) can also be simulated. For many technologically

important flows compressibility effects are important. Direct simulation is

already playing an important role in understanding effects such as the re-

duced growth rate of mixing layers as Mach number is increased (Vreman

et al., 1996). With high speed compressible flows, however, the potential

combination of shock waves and turbulent flow represents a significant chal-

lenge for numerical methods. Although standard total variation diminishing

(TVD) type of shock-capturing schemes for the Euler equations (Yee, 1989)

are now routinely used in high speed blast wave simulations with virtually

non-oscillatory, crisp resolution of discontinuities, for the unaveraged un-

steady Navier-Stokes equations it was observed (Sandham & Yee 1989) that

the clipping behavior near extrema of these schemes led to generally poor

accuracy.

In response to this difficulty, subsequent large three-dimensional computa-

tions have either operated at low Reynolds and Mach numbers where the

shock waves, if present at all, are weak and can be resolved (Luo & Sand-

ham, 1994) or have used hybrid schemes where shock-capturing schemes are

turned on only when shock waves are detected (Vreman et al., 1995, Adams

& Shariff, 1996, Adams, 1997 and Lee et al., 1997). These calculations have

all used base methods of fourth or sixth-order accuracy, well suited to the

accurate calculation of turbulence.

Work has continued on model problems to find improved high order shock-

capturing schemes. Lumpp (1996a,b) used high order finite volume es-

sentially non-oscillatory (ENO) schemes for vortex pairing test cases and

obtained good shock and vortex resolution. However, large grid stencils

and high computational cost has prohibited application to three-dimensional

problems. Fu and Ma (1997) have developed a scheme where the group veloc-

ity near shock waves is fixed by the numerical method such that oscillations

near shock waves are sucked into the shock wave itself, giving very sharp

shocks. In another development Yee (1997) has developed a class of compact

shock-capturing schemes that require smaller grid stencils and operations
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count than standard schemes. Gustafsson and Olsson (1995) developed sta-

ble higher-order centered schemes with stable numerical boundary condition

treatments. For problems containing shocks, Gustafsson and Olsson used

a scalar shock-capturing filter. Such schemes have advantages over higher-

order ENO schemes which require very large grid stencils even for modest

orders of accuracy. (For example, a seven-point grid stencil is required for

a second-order ENO scheme.) Yee et al. (1998) proposed a combination

of narrow grid stencil of higher-order classical spatial differencing schemes

using low order TVD or ENO dissipations as characteristic filters with an

artificial compression method (ACM) switch. The ACM switch is the same

as Harten (1978) but applied in a slightly different context. The Yee et al.

approach is aimed at problems containing vortex convections, shock, shear,

vortex and turbulence interactions. These characteristic TVD (and ENO) fil-

ters in conjunction with the artificial compression method can even improve

fine scale flow structure when applied to existing methods of Yee (1989) and

Yee (1997).

A numerical scheme for DNS of shock-turbulence interactions should ideally

not be significantly more expensive than the classical fourth or sixth-order

compact or non-compact spatial differencing scheme. It should be possible to

resolve all scales down to scales of the order of (if necessary) the Kolmogorov

scales of turbulence accurately and efficiently, while at the same time being

able to capture steep gradients occurring at smaller scales (e.g. a few mean

free paths for a strong shock wave). Turbulence mechanisms should not be

affected by the numerical scheme resulting directly from the governing equa-

tions. Some early direct simulation codes for incompressible flow were unable

to sustain turbulence in channel flow due to their properties with respect to

aliasing errors. Shock-capturing schemes are dissipative and an important

test of their suitability for turbulence is that they are capable of sustaining

turbulence. The purpose of the present work is to evaluate a number of can-

didate schemes discussed in Yee et al. (1998) using model problems. In the

first of these, a vortex pairing in a time-developing mixing layer, shock waves

form around the vortices. In the second problem, a shock wave impinging

on a spatially-evolving mixing layer, the evolving vortices must pass through

a shock wave, which in turn is deformed by the vortex passage. From these

two-dimensional tests some conclusions can be drawn regarding numerical

methods for accurate calculation of vortex motions within an overall shock-
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2 Numerical Techniques

The numerical methods used for the study are briefly described in this sec-

tion. The reader is referred to Yee (1989) for a more complete description of

the basic shock-capturing approaches and Yee et al. (1998) for the complete

scheme.

The classical fourth-order Runge-Kutta time discretization and classical fourth

or sixth-order compact or non-compact spatial differencing as base schemes

are employed. A second-order TVD dissipation is applied as a filter step at

the end of the full Runge-Kutta time step in the form of an additional dissi-

pative numerical flux term

F;*+½=  Rj+½ j+½, (1)

where R is the right eigenvector matrix of the flux Jacobian from the Euler

equations and (I) is defined by the TVD shock-capturing scheme. The de-

tailed programming allows the Euler and viscous terms to be computed us-

ing separate methods. The basic spatial schemes are (i) non-compact central,

(ii) compact central and (iii) predictor-corrector upwind or upwind biased.

Non-compact schemes are the standard second, fourth and sixth-order meth-

ods. Compact schemes are either the standard symmetric fourth-order or

sixth-order Pade schemes (Ciment & Leventhal, 1975, Hirsh, 1975 and Lele,

1992). For the purposes of this paper we concentrate on the central schemes.

Comparable accuracy was obtained with the predictor-corrector upwind or

upwind biased schemes proposed by Hixon and Turkel (1998).

2.1 TVD Dissipation as a Filter Step

The TVD dissipation as a filter step is taken as the diffusive part of an

upwind explicit shock-capturing scheme of the Harten-¥ee type, described in

Yee (1989). (Other comparable schemes are also applicable.) For a second-
l

order upwind TVD scheme the elements of (I)j+l, denoted by Cj+½, are

l \oLl¢_+½ _-- ¢(a_+½)(g}+ 1 + g}) -- _(a_+½ + _j+½) j+½ (2)

4



The c_l.. 1 are elements of R_½ (Qj+I - Qj), where Q is the vector of conser-

vative variables, and

¢(z) = _/(_+ z2), (3)

and

- g))_J+½ (4)l¢(a_j+½)(_)+l _

To avoid an additional logical statement in the actual coding, e is added to

the _/). The alj+½ are characteristic speeds of the Euler flux evaluated using

Roe's average. In all of the computations, we take e = 10 -7. We use the flux

limiter given by

_'' _ _ (5)g_= _J-½[(_J+½)+ + j+_[( j-_ +_]
l 2

(_+½) + (__½): + 2_

Elements of Rj+½ are computed using Roe's averaging procedure. In all of

the computations, the value of _ was taken to be 1/16 to satisfy an entropy

condition. The resolution of the fine scale flow structure showed minor sen-

sitivity to the value of this constant. See Yee et al. (1998) for a discussion.

2.2 The ACM Switch

An artificial compression modification can be made to the TVD dissipation,
t

hereafter, referred to as "the ACM/TVD filter". The term ¢j+1/2 is multi-

plied by a switch designed by Harten (1978)

1 l
n max(0), _)+1), (6)

where l z

_ = I1_j+1/21_-I_j__/_ll_ (7)
Io_j+_/21+ Io_j__/21+ c"

This serves to limit the action of the TVD dissipation to the immediate vicin-

ity (within one grid cell) of the discontinuity, as detected by steep gradients

in the characteristic variables. The constant e -- 10 -7 is again used to avoid

any potential singularity without an extra logical statement in the actual



Method Order Order Shock- Artificial Compact
(Euler) (viscous) capturing compression

CEN44
TVD22
TVD44
TVD66
ACM22
ACM44
ACM66
ACM44C
ACM66C

4
2
4
6
2
4
6
4
6

4 No
2 Yes
4 Yes
6 Yes
2 Yes
4 Yes
6 Yes
4 Yes
6 Yes

Table 1: Notation for numerical methods.
formal order of the basescheme.

No

No

No

No

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

No

Yes

Yes

Order of accuracy refers to the

coding. The optimum value of _ is problem-dependent and will be discussed

further in a later section. See Yee et al. (1998) for additional discussion.

The various combinations of schemes that will be used in this paper are

shown on Table 1. The notation "TVD" with the various orders attached at

the end means the second-order TVD scheme dissipation (without the ACM

switch) is used as the filter with the indicated order of the base scheme for the

convection and viscous terms. For simplicity of discussion, unless otherwise

indicated, the term TVD or ACM scheme means the selected base schemes

indicated in Table 1 using the TVD or ACM/TVD filter.

3 Test Cases and Reference Solutions

The performance of the candidate schemes is based on a Cartesian grid with

an analytical stretching in the y-direction only. For the present study no

attempt is made to use a more sophisticated adaptive grid.

3.1 Vortex Pairing in a Time-Developing Mixing Layer

The first test case is of vortex growth and pairing in a temporal mixing layer

at a convective Mach number equal to 0.8. At this Mach number there are

6
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shock waves (shocklets) that form around the vortices and the problem is to

compute accurately the vortex evolution while avoiding oscillations around

the shocks. Previous calculations of the problem can be found in Sandham

and Reynolds (1989), Lumpp(1996a,b) and Fu and Ma (1997). Here we set

up a base flow as in Sandham and Yee (1989)

u = 0.5 tanh(2y), (8)

with velocities normalized by the velocity jump U1 -U2 across the shear layer

and distances normalized by vorticity thickness,

5w- U1- [/2 (9)
(du/dy)ma_"

Subscripts 1 and 2 refer to the upper (y > 0) and lower (y < 0) streams of

fluid respectively. The normalized temperature and hence local sound speed

squared is determined from an assumption of constant stagnation enthalpy

= c_ + _---_(V_ -C 2 U2). (10)

Equal pressure through the mixing layer is assumed. Therefore, for this

configuration of U2 = -[/1 both fluid streams have the same density and

temperature for y --+ +c_. The Reynolds number defined by the velocity

jump, vorticity thickness and kinematic viscosity at the free-stream temper-
ature is set here to be 1000. The Prandtl number is set to 0.72, the ratio of

specific heats is taken as 7 = 1.4 and Sutherland's law

# = (c2/c2)1"5(1 + llO.3/TR) (11)
#R C2/C2R + 110.3/TR

with reference temperature TR = 300K is used for the viscosity variation

with temperature. The reference sound speed squared c_ is taken as the

average of c2 over the two free streams with #R the viscosity corresponding

to c_.

Disturbances are added to the velocity components in the form of simple

waves. For the normal component of velocity we have the perturbation

2

v' = __, ak cos( 27rkx / L_ + Ck ) exp(--y2 /b ), (12)
k=l

7
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where Lx = 30 is the box length in the x-direction and b -- 10 is the

y-modulation. In our test case we simulate pairing in the center of the

computational box, by choosing the initially most unstable wave k = 2 to

have amplitude a2 = 0.05 and phase ¢2 = -_r/2, and the subharmonic wave

k = 1 with al = 0.01 and ¢1 = -7r/2. The u-velocity perturbations are

found by assuming that the total perturbation is divergence free. These

fluctuations correspond only approximately to eigenfunctions of the linear

stability problem for a compressible mixing layer, but they serve the purpose

of initiating the instability of the mixing layer and have the advantage as a

test case in that they can be easily coded.

Numerically the grid is equally spaced and periodic in the x-direction and

stretched in the y-direction, using the mapping

Ly sinh(by_) (13)
Y = -2- sinh(by) '

where we take the box size in the y-direction Ly = 100, and the stretching

factor by = 3.4. The mapped coordinate r/is equally spaced and runs from

-1 to +1. The boundaries at :l:Ly/2 are taken to be slip walls. For example,

at the lower boundary

Pl = P2, (14)
(pu)l = (pu)2, (15)
(pv)l .= 0, (16)
(ET)I = [4(ET)2- (ET)3]/3, (17)

where subscripts here refer to the grid point and ET is the total energy.

Sample results for this configuration were obtained from computations on

a 201 × 201 grid, using the fourth-order non-compact central spatial differ-

encing, and the ACM/TVD filter (ACM44). The constant t_=0.7 for the

u -4- c and v =t=c nonlinear characteristic fields and n=0.35 for the u and v

linear characteristic fields were used for the computations. Figure la shows

snapshots of the pressure field at times t = 40, 80, 120,160, illustrating the

roll-up of the primary vortices, followed by vortex merging. Figure lb - ld

show the corresponding density, vorticity and temperature contours. Shock

waves form around the vortices, with a peak Mach number ahead of the vor-

tex of approximately 1.55 at t = 120. Figure 2 shows the growth of two



measuresof shearlayer thickness,the vorticity thicknessdefinedby equation
(11) and a momentum thickness,definedhere by

t? =/L;_2 "-#([71-- _) (_ -- U2 )dy, (18)

with averages being taken over the periodic direction x. Both thickness mea-

surements show rapid growth up to a peak at around t = 120 followed by

decay. The vorticity thickness is generally more sensitive to details of the flow

evolution. Because of the finite box in x the flow would eventually relami-

narize. This case is used as a reference high resolution case for comparison of

schemes in Section 4. It was checked to be adequately converged by running

another simulation with 401 x 401 grid points.

3.2 Shock Wave Impingement on a Spatially-Evolving

Mixing Layer

The second test case has been developed to test the behavior of the schemes

for shock waves interacting with shear layers where the vortices arising from

shear layer instability are forced to pass through a shock wave. An oblique

shock is made to impact on a spatially-developing mixing layer at an initial

convective Mach number of 0.6. The shear layer vortices pass through the

shock system and later through another shock, imposed by reflection from a

(slip) wall at the lower boundary. The problem has been arranged so that
the Mach number at the outflow boundary is everywhere supersonic, so no

explicit outflow boundary conditions are required. This allows us to focus on

properties of the numerical schemes rather than on the boundary treatment.

Figure 3 illustrates the nature of the flow on a 321 x 81 grid. This result was
taken from a laminar flow simulation with no incoming perturbations. The

shear layer originates at x -- 0, y = 0 at the center of the left hand boundary.

An oblique shock originates from the top left hand corner and this impacts

on the shear layer at around x = 90. The shear layer is deflected by the

interaction. Afterwards we have a shock wave below the shear layer and an

expansion fan above it. The shock wave reflects from the lower solid wall and

passes back through the shear layer. The lower wall uses a slip condition so

no viscous boundary layer forms and we focus on the shock-wave interaction

9



Property (1) (2) (3) (4) (5)
u-velocity

v-velocity

0 (degrees)

density p

pressure p

sound speed c

Mach number ]M]

3.0000

0.0000

0.0000

1.6374

0.3327

0.5333

5.6250

2.0000

0.0000

0.0000

0.3626

0.3327

1.1333

1.7647

2.9709

-0.1367

2.6343

2.1101

0.4754

0.5616

5.2956

2.9792

-0.1996

3.8330

1.8823

0.4051

0.5489

5.4396

1.9001

-0.1273

3.8330

0.4173

0.4051

1.1658

1.6335

Table 2: Flow properties for the shock-wave/shear-layer test case in various

regions of the flow: (1) upper stream inflow, (2) lower stream inflow, (3)

upper stream after oblique shock, (4) upper stream after expansion fan, (5)
lower stream after shock wave.

with the unstable shear layer. The full no-slip problem would, however, make

a challenging test case for the future.

The inflow is specified again with a hyperbolic tangent profile, this time as

u = 2.5 + 0.5 tanh(2y), (19)

giving a mixing layer with upper velocity U1 = 3, lower velocity U2 -- 2, and

hence a velocity ratio of 1.5. Equal pressures and stagnation enthalpies are

assumed for the two streams, with convective Mach number, defined by

ul - v2
Mc - , (20)

ci +c2

where cl and c2 are the free stream sound speeds, equal to 0.6. The reference

density is taken as the average of the two free streams and a reference pressure

as (Pl + p2)(U1 - U2)2/2. This allows one to compute the inflow parameters

as given in the first two columns of Table 2. Inflow sound speed squared is

found from the relation for constant stagnation enthalpy (12).

The upper boundary condition is taken from the flow properties behind an

oblique shock with angle/3 = 12 °, given in column 3 of Table 2. The table

also gives the properties behind the expansion fan (column 4) and after the

oblique shock on the lower stream of fluid (column 5) computed by standard

10
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gasdynamics methods with t3 = 38.118 °. The conditions in regions 4 and

5 do not correspond exactly to the simulations due to the finite thickness

of the shear layer in practice. The Mach number of the lower stream after

this shock is approximately M5 -- 1.6335 and remains supersonic through all

the successive shocks and expansion fans up to the outflow boundary. The

resulting shock waves are not strong, but tests showed that they could not

be computed without using shock-capturing techniques. The lower boundary

was specified with the same slip condition used for the pairing case (Equations

(16-19)).

The Prandtl number and ratio of specific heats were taken to be the same as

for the vortex pairing test case. The Reynolds number was chosen to be 500.

Fluctuations are added to the inflow as

2

v' = akcos(2 kt/T + Ck)exp(-y2/b), (21)
k=l

with period T = A/Uc, wavelength A = 30, convective velocity Uc = 2.68

(defined by U_ .= (Ulc2 + UeO)/(cl + c2)) and b -- 10. For k -= 1 we take

al = 0.05 and ¢ = 0, and for k = 2 we take a2 = 0.05 and ¢ = Ir/2. No

perturbations are added to the u-component of velocity.

The grid is taken to be uniform in x and stretched in y according to equation

(15) with by -- 1. This stretching is much milder than for the pairing problem,

as we have to resolve the shear layer even when it deflects away from y = 0.

The box lengths were taken to be Lx = 200 and Ly - 40.

A reference solution for the pressure, density and temperature fields is shown

on figure 4 for a computation on a grid of 641 x 161. The computation employs

the fourth-order central differencing as the base scheme in conjunction with

the ACM/TVD filter (ACM44) with n = 0.35 for nonlinear characteristic

fields and n = 0.175 for the linear characteristic fields. The vortex cores are

located by low pressure regions and the stagnation zones between vortices

by high pressure regions. The shock waves are seen to be deformed by the

passage of the vortices. Another interesting observation is the way the core

of the vortex at x = 148 has been split into two by its passage through the

reflected shock wave. In spite of the relatively high amplitude chosen for the

subharmonic inflow perturbation there is no pairing of vortices within the

computational box. We do, however, begin to see eddy shock waves around

11



..... i ::%;:,::ii_ ¸ .:i:: ¸ ':

the vortices near the end of the computational box where the local convective

Mach number has increased to around 0.66. The oscillations seen near the

upper boundary for x > 120 occur where the small Mach waves from the

initial perturbations arrive at the upper boundary. The use of characteristic

boundary conditions should remove this problem. Practically, the amplitude

of oscillations is not sufficient to cause numerical instability or affect the

remainder of the flow.

4 Computational Results

The notation that will be used for discussing the results for different numer-

ical schemes is shown on Table 1. To examine the resolution of the proposed

schemes where shock waves are absent, the computation is compared with

the CEN44 (the classical spatially fourth-order central differencing for the

convection and diffusion terms) before shock waves were developed for the

vortex pairing case. Good agreements were obtained.

The performance of these schemes with the presence of shock waves and

turbulence is evaluated based on the following factors:

(a) Effect of the ACM term

(b) Effect of the order of the base scheme

(c) Effect of the grid size (grid refinement study)

(d) Effect of employing a compact or non-compact base scheme

(e) Effect of the adjustable constant a for the particular physics

(f) Shear and fine flow structure capturing capability ..

4.1 Vortex Pairing

For an initial comparison of the schemes we compute the test case of Section

3.1 on a grid of 101 × 101 with a time step At = 0.1, running up to t = 160.

Effect of the A CM Term:

Figure 5 shows the effect of the artificial compression method for the vortic-

ity and momentum thickness variation with time for the TVD44 and ACM44

schemes compared with the reference results from a fine grid (Section 3.1).

Results from the ACM method are far superior to those from the standard

12



TVD formulation. Note that there is no improvement in the shock resolu-
tion sincethe ACM term limited the amount of dissipation awayfrom high
gradient areaswhereasthe shock resolution is dictated by the flux limiter.

Effect of the Order of the Base Scheme:

Figure 6 shows the effect of increasing accuracy from second to fourth and

sixth order using the TVD filter (TVD22, TVD44 and TVD66). As can be

seen there is almost no improvement as the order of accuracy is raised. Fig-

ure 7 shows the same plot for the ACM/TVD filter (ACM22, ACM44 and

ACM66). Here there is an improvement, although the results even for the

lowest order are quite good. There is little to choose in the shock resolution

properties with the variation in order of accuracy. We choose to compare

temperature contours, which are most sensitive to oscillations (Lumpp, pri-

vate communication). Figure 8 shows a comparison of the ACM schemes of

various order with the reference solution. All the schemes here capture the

shock waves with minimal oscillations. The temperature contours for the

TVD filter of the various order using a 101 × 101 grid, although not shown,

are not even nearly as accurate as the ACM44 using a 41 × 41 grid. See the

last plot of Figure 15 for a comparison. It can be seen that there is a sig-

nificant advantage in moving from second to fourth order, but less is gained

in moving from fourth to sixth order using TVD or ACM/TVD as a filter.

This is in contrast to an isentropic vortex convection test case where there

are definite benefits of moving from fourth order to sixth order (Yee et al.,

1998). It appears that the effect of order of accuracy are more pronounced

for long time integrations of pure convection.

Effect of the Grid Size (Grid Refinement Study):

To investigate the effect of order of the accuracy in more detail we consider

simulations on a very coarse grid of 41 × 41 points. Such a case corresponds

in practice to simulation of scales of turbulence arising from shear layers only

two or three computational cells across. Figure 9 shows results for the ACM

schemes. To ensure that the fine scale flow structure is fully resolved by the

reference grid 201 × 201, the same simulation was done on a 401 × 401 grid

(figures not shown).

13



Effect of Compact or Non-Compact Base Scheme:

For wave propagation and computational problems the performance of fourth

and sixth-order compact schemes, although more CPU intensive, appears to

be superior to their non-compact cousin. For problems with shock waves the

benefit of compact over non-compact schemes is less known due to the filter

step. Figure 10 shows results for the fourth and sixth-order compact schemes,

which are similar to results from the sixth-order non-compact scheme. Again

there is little improvement compared with the fourth-order non-compact

scheme. A conclusion is that the use of the ACM/TVD in the filter step

is essential to get the benefits of moving from second to fourth order, but

even with this method there is little benefit in moving to even higher-order

schemes.

Effect of the Adjustable Constant _:

The ACM switch of Harten has been demonstrated to give good shock resolu-

tion and to be essential if the benefits of higher-order discretization schemes

are to be realized. There is, however, an adjustable parameter _ in the for-

mulation, and results are sensitive to the precise choice of its value. Figure

11 illustrates the effect on the result for the pairing test case of reducing the

parameter from 0.7 to 0.35. The vorticity and momentum thickness devel-

opment is improved due to the reduction in numerical dissipation. From the

temperature contours on Figure 12 it can be seen that this has been achieved
at the cost of formation of small oscillations around the shock wave. For the

present problem one would be ready to pay this price to get the more accurate

vortex evolution. However, in general it is not known how such numerically-

induced oscillations interact with small scales of turbulence. For the current

method the correct procedure for a simulation of shock-turbulence interac-

tion would be to find the smallest value of _ to resolve the shock waves

satisfactorily and then increase the grid resolution until the turbulence is ad-

equately resolved. There are perhaps other formulations of the ACM switch

parameter _ based on the flow physics that can perform the adjustment to

higher values automatically when stronger shock waves are present. This is

a subject of future research.

Shear and Fine Flow Structure Capturing Capability:

Shock-capturing schemes are designed to accurately capture shock waves, but

14



with a lessaccuratecapturing capability for contact discontinuities. In fact,
the mixing layer seenat a large scaleis a contact discontinuity. If one uses
enough grid points to resolvethe region of high shear in conjunction with
physical viscosity, it might not needto be 'captured'. Contact discontinuities
relate to the characteristicvelocities u and v. As an experiment these linear

characteristics were computed with no numerical dissipation. Filters were

only applied to the nonlinear characteristics fields u ± c and v -4- c using the

ACM44 method. Interestingly, the computation was no less stable than that

the full TVD or ACM schemes (applying _ to all of the characteristic fields).

Figure 13 shows the vorticity thickness evolution and Figure 14 the resulting

temperature field. It can be seen that good results were obtained, although

there is a trace of oscillation near the shock wave. This could be remedied

by increasing t_ slightly. See Yee et al. (1998) for an illustration. However,

the flow features of the shear and fine flow structure are accurately captured

with similar resolution as the 201 × 201 grid with ACM44 applied to all of

the characteristic fields (Figure 15a).

To balance the shear and shock-capturing, one alternative is to switch to a

more compressive limiter (see Yee (1989)) for the linear characteristics fields.

Another alternative is to reduce the value of _ for the u, v linear fields. The

comparison of using different values of _ for the linear and nonlinear fields is

also shown in Figures 13 and 14.

Figure 15 shows the comparison of the different _ values for the three grids.

Figure 16 shows the comparison of the five classical flux limiters (see Equa-

tions (4.34c)-(4.34g) of Yee (1989)) using ACM44.

4.2 Shock-Shear Layer Interaction

The test case defined in Section 3.2 was run on a grid of 321 × 81 with

At = 0.12 up to t = 120 with _ = 0.35. Figure 17 shows the density field

for the TVD44 and ACM44 schemes compared with the reference solution

(641 x 161 grid). Again it can be seen that the ACM modification is essential

for obtaining good vortex evolution (additionally better shock resolution is

obtained). For a more quantitative comparison Figures 18 and 19 show slices

through the density field between x = 50 and x = 150 at y = 0 (the centerline

of the computational domain). From Figure 18 it is apparent that all the

standard TVD schemes, of whatever order, miss the correct vortex formation.
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Method
Method
CEN44 19.5
TVD22 18.8
TVD44 23.4
ACM22 19.6
ACM44 24.2

Pairing Shock-wave
(200 steps) (100 steps)

22.1
22.8
26.9
23.8
27.9

Table 3: CPU times for various numerical options, measuredin Cray C90
seconds.For a key to the variousmethodsseeSection4.1.

From Figure 19 there are somevisible benefits in moving from secondto
higher-order differencing,both in the amplitude of the fluctuations and in
the correct convectivevelocity of the vortices. Figures 20 and 21 compare
the density contour using limiter 3 and limiter 5. Thesefiguresalsocompare
the useof different _ valuesfor the linear and nonlinearcharacteristic fields.

4.3 Computational Costs

The researchcode that we built consistsof many schemesand options and
thus is far from beingan optimum code. Basedon this fact, the CPU times
for the Cray C90 are given on Table 3 for the two model problems. Times
aregiven in secondsfor 200 steps of the vortex pairing test caseon a grid
of 101× 101 and for 100 steps of the shock-waveimpingement problem on
a grid of 321× 81.

The non-compact baseschemeswith the ACM/TVD filter are only around
25%more expensivethan the samebaseschemeswithout ACM/TVD filter.
This hasbeenachievedby only requiring one application of the ACM/TVD
filter per full time step for the convectionterms.

For the Cray C90 it wasfound that the compact schemesweresignificantly
moreexpensive,but this result is distorted for the presentcodeby incomplete
vectorization. An extra cost of around 2/3 is expectedfrom considerations
of operations count.
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5 Conclusions

Two model problems were considered to test the behavior of shock-capturing

schemes in flows where the evolution of vortices from shear layer instabilities

plays a crucial role. Standard total variation diminishing schemes do not

perform well for these problems. It was found that an artificial compression

modification gave much improved results and with this approach there are

definite benefits in moving from second to fourth-order differencing schemes.

The benefits were less pronounced in moving to sixth order. The fourth order

ACM44 schemes show highly accurate shock-wave and shear-layer capability.

The non-compact fourth-order base scheme requires a five point stencil, the

same as the second-order TVD scheme. There is potentially an additional

problem near boundaries in that reduced order and/or upwind schemes must

be used. Stable boundary conditions such as those proposed by Gustafs-

son and Olsson (1995) must be applied. If an adaptive grid is used, higher

accuracy can be obtained.
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(o) rho ot t=120 (min= 0.523133 mox= 2.67514), ACM44, _=0.35, 321.81
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(b) rho ot t=120 (min=. 0.319307 mox= 2.89339), ACM44, lin. _c=0.175, 321.81
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Figure 20. Comparison of density contours at t = 120 for the shock-shear-

layer test case: (a) ACM44, a = 0.35 for all fields, and (b) ACM44, a = 0.35

for the nonlinear fields and a -- 0.175 for the linear fields for a 321 x 81 grid.



(o) rho ot t=120 (min= 0.311034 mox= 2.75018), ACM44-1im5, _=0.35, 321.81
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(b) rho ot t=120 (min= 0.294973 max= 3.00283), ACM44-1im5, lin. K=0.175, 321.81
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Figure 21. Comparison of density contours at t = 120 for the shock-shear-

layer test case: (a) ACM44, limiter 5, a = 0.35 for all fields, and (b) ACM44,

limiter 5, g -- 0.35 for the nonlinear fields and a = 0.175 for the linear fields

for a 321 x 81 grid.


